Archiwum dla kategorii "rubidium"

Naukowa precyzja zegara atomowego

Friday, February 5th, 2010

Precyzja staje się coraz ważniejsza w nowoczesnych technologiach i niczym więcej niż dokładnością w utrzymywaniu czasu. Od Internetu po nawigację satelitarną precyzyjna i dokładna synchronizacja ma zasadnicze znaczenie w dzisiejszych czasach.

W rzeczywistości wiele technologii, które bierzemy za pewnik w dzisiejszym świecie, nie byłoby możliwe, gdyby nie najdokładniejsze maszyny wymyślone - zegar atomowy.

Zegary atomowe są tylko urządzeniami mierzącymi czas, takimi jak inne zegary lub zegarki. Ale to, co je wyróżnia, to dokładność, jaką mogą osiągnąć. Jako prosty przykład Twój standardowy zegar mechaniczny, taki jak wieża zegarowa w centrum miasta, będzie dryfował nawet o sekundę dziennie. Zegary elektroniczne, takie jak zegarki cyfrowe lub radiobudziki, są dokładniejsze. Tego typu zegary dryfują sekundę w ciągu około tygodnia.

Jednak przy porównywaniu dokładności zegara atomowego, w którym sekunda nie zostanie utracona lub utracona w 100,000 lat lub więcej, dokładność tych urządzeń jest nieporównywalna.

Zegary atomowe mogą osiągnąć tę dokładność dzięki oscylatorom, z których korzystają. Prawie wszystkie rodzaje zegara mają oscylator. Generalnie oscylator jest po prostu obwodem, który regularnie tyka.

Zegary mechaniczne wykorzystują wahadła i sprężyny, aby zapewnić regularną oscylację, podczas gdy zegary elektroniczne mają kryształ (zwykle kwarc), który po przejściu prądu elektrycznego zapewnia dokładny rytm.

Zegary atomowe wykorzystują oscylację atomów podczas różnych stanów energii. Często używa się cezu 133 (a czasami rubidu), ponieważ jego nadsubtelna przejściowa oscylacja wynosi ponad 9 miliarda razy na sekundę (9,192,631,770) i to nigdy się nie zmienia. W rzeczywistości Międzynarodowy system jednostek (SI) teraz oficjalnie uznaje drugi w czasie cykl 9,192,631,770 promieniowania z atomu cezu.

Zegary atomowe stanowią podstawę światowego globalnego harmonogramu - UTC (Coordinated Universal Time). A sieci komputerowe na całym świecie pozostają zsynchronizowane za pomocą sygnałów czasu nadawanych przez zegary atomowe i odbierane Serwery czasu NTP (Network Time Server).

Oscylatory Rubidowe Dodatkowa dokładność dla Serwera NTP (Część 2)

Sobota, styczeń 9th, 2010

Nieprzerwany…

Jednak są sytuacje, w których serwer czasu może utracić połączenie z zegarem atomowym i nie otrzymywać kodu czasu przez dłuższy czas. Czasami może to być spowodowane przestojami kontrolerów zegara atomowego do konserwacji lub że zakłócenia w pobliżu blokują transmisję.

Oczywiście im dłuższy sygnał, tym bardziej potencjalny dryf może wystąpić w sieci jako oscylator kwarcowy w sieci Serwer NTP to jedyna rzecz utrzymująca czas. W przypadku większości aplikacji nigdy nie powinno to stanowić problemu, ponieważ najbardziej długotrwały okres przestoju wynosi zazwyczaj nie więcej niż trzy lub cztery godziny, a serwer NTP nie dryfowałby zbyt często w tym czasie, a występowanie tego przestoju jest dość rzadkie (może raz lub dwa razy w roku).

Jednak w przypadku niektórych ultraprecyzyjnych zastosowań wysokiej klasy oscylatory kryształu rubidu zaczynają być używane, ponieważ nie dryfują tak bardzo jak kwarc. Rubidium (często używane w zegary atomowe zamiast cezu) jest znacznie dokładniejszym oscylatorem niż kwarcem i zapewnia lepszą dokładność, gdy nie ma sygnału do Serwer czasu NTP pozwalając sieci na utrzymanie dokładniejszego czasu.

Sam Rubid jest metalem alkalicznym o właściwościach zbliżonych do potasu. Jest bardzo nieznacznie radioaktywny, chociaż nie stanowi zagrożenia dla zdrowia ludzkiego (i jest często stosowany w obrazowaniu medycznym przez wstrzyknięcie go pacjentowi). Jego okres półtrwania wynosi 49 miliard lat (czas potrzebny do zaniku o połowę - w porównaniu z niektórymi z najbardziej śmiercionośnych materiałów radioaktywnych mają okres półtrwania poniżej sekundy).

Jedynym prawdziwym niebezpieczeństwem związanym z rubidium jest to, że reaguje on raczej gwałtownie na wodę i może wywołać pożar

Oscylatory Rubidowe Dodatkowa dokładność dla Serwera NTP (Część 1)

Czwartek, styczeń 7th, 2010

Oscylatory były niezbędne w opracowywaniu zegarów i chronologii. Oscylatory są po prostu obwodami elektronicznymi, które wytwarzają powtarzalny sygnał elektroniczny. Często do stabilizowania częstotliwości oscylacji wykorzystywane są kryształy takie jak kwarc,

Oscylatory są podstawową technologią zegarów elektronicznych. Zegarki cyfrowe i analogowy zegar zasilany bateryjnie są kontrolowane przez obwód oscylacyjny, zwykle zawierający kryształ kwarcu.

I choć zegary elektroniczne są wielokrotnie dokładniejsze niż zegar mechaniczny, oscylator kwarcowy będzie nadal dryfował o sekundę lub dwie w tygodniu.

Zegary atomowe oczywiście są znacznie dokładniejsze. Nadal jednak używają oscylatorów, najczęściej cezu lub rubidu, ale robią to w stanie hiper-fine, często zamrożonym w ciekłym azocie lub helu. Zegary te w porównaniu do zegarów elektronicznych nie dryfują o sekundę nawet o milion lat (i przy bardziej nowoczesnych zegarkach atomowych 100 milion lat).

Aby wykorzystać tę dokładność chronologiczną serwer czasu sieciowego, który używa NTP (Network Time Protocol) może być użyty do synchronizacji kompletnych sieci komputerowych. Serwerów NTP użyj sygnału czasu z odbiornika GPS lub radia długofalowego, które pochodzi bezpośrednio z zegara atomowego (w przypadku GPS czas jest generowany w zegarze na pokładzie satelity GPS).

Serwerów NTP ciągle sprawdzaj to źródło czasu, a następnie dostosuj urządzenia w sieci, aby pasowały do ​​tego czasu. Pomiędzy ankietami (odbierającymi źródło czasu), standardowy czasowy oscylator jest używany przez serwer czasu do utrzymywania czasu. Zwykle te oscylatory są kwarcowe, ale ponieważ serwer czasu jest w regularnej komunikacji z zegarem atomowym, co minutę lub dwie, to normalne dryfowanie oscylatora kwarcowego nie stanowi problemu, ponieważ kilka minut między sondami nie doprowadziłoby do żadnego mierzalnego dryfu.

Ciąg dalszy nastąpi ...